Chào mừng bạn đến blog thù.vn Trang Chủ

Table of Content

Chromosomes contain thousands of segments called ✅ Uy Tín

Kinh Nghiệm về Chromosomes contain thousands of segments called Mới Nhất

Hoàng Duy Minh đang tìm kiếm từ khóa Chromosomes contain thousands of segments called được Cập Nhật vào lúc : 2022-10-09 06:50:22 . Với phương châm chia sẻ Thủ Thuật Hướng dẫn trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi Read tài liệu vẫn ko hiểu thì hoàn toàn có thể lại phản hồi ở cuối bài để Tác giả lý giải và hướng dẫn lại nha.

Almost every cell in our body toàn thân contains 23 pairs of chromosomes, for a total of 46 chromosomes. Half of the chromosomes come from our mother, and the other half come from our father. The first 22 pairs are called autosomes. The 23rd pair consists of the sex chromosomes, X and Y. Females usually have two X chromosomes, and males usually have one X and one Y chromosome in each cell. All of the information that the body toàn thân needs to grow and develop comes from the chromosomes. Each chromosome contains thousands of genes, which make proteins that direct the body toàn thân’s development, growth, and chemical reactions.

Nội dung chính
    Transcription and Translation of a GeneTranscriptionTranslationHow is the code translated?Mitochondrial DNAWhat do chromosomes contain thousands of?What is the name of the thousands of segments contained in chromosomes quizlet?Do chromosomes contain DNA?Is a chromosome a small section of a gene?

Many types of chromosomal abnormalities exist, but they can be categorized as either numerical or structural. Numerical abnormalities are whole chromosomes either missing from or extra to the normal pair. Structural abnormalities are when part of an individual chromosome is missing, extra, switched to another chromosome, or turned upside down.

Chromosomal abnormalities can occur as an accident when the egg or the sperm is formed or during the early developmental stages of the fetus. The age of the mother and certain environmental factors may play a role in the occurrence of genetic errors. Prenatal screening and testing can be performed to examine the chromosomes of the fetus and detect some, but not all, types of chromosomal abnormalities.

Chromosomal abnormalities can have many different effects, depending on the specific abnormality. For example, an extra copy of chromosome 21 causes Down syndrome (trisomy 21). Chromosomal abnormalities can also cause miscarriage, disease, or problems in growth or development.

The most common type of chromosomal abnormality is known as aneuploidy, an abnormal chromosome number due to an extra or missing chromosome.Most people with aneuploidy have trisomy (three copies of a chromosome) instead of monosomy (single copy of a chromosome). Down syndrome is probably the most well-known example of a chromosomal aneuploidy. Besides trisomy 21, the major chromosomal aneuploidies seen in live-born babies are: trisomy 18; trisomy 13; 45, X (Turner syndrome); 47, XXY (Klinefelter syndrome); 47, XYY; and 47, XXX.

Structural chromosomal abnormalities result from breakage and incorrect rejoining of chromosomal segments. A range of structural chromosomal abnormalities result in disease. Structural rearrangements are defined as balanced if the complete chromosomal set is still present, though rearranged, and unbalanced if information is additional or missing. Unbalanced rearrangements include deletions, duplications, or insertions of a chromosomal segment. Ring chromosomes can result when a chromosome undergoes two breaks and the broken ends fuse into a circular chromosome. An isochromosome can form when an arm of the chromosome is missing and the remaining arm duplicates.

Balanced rearrangements include inverted or translocated chromosomal regions. Since the full complement of DNA material is still present, balanced chromosomal rearrangements may go undetected because they may not result in disease. A disease can arise as a result of a balanced rearrangement if the breaks in the chromosomes occur in a gene, resulting in an absent or nonfunctional protein, or if the fusion of chromosomal segments results in a hybrid of two genes, producing a new protein product whose function is damaging to the cell.

Each of our cells has a complete set of our 46 chromosomes, i.e., our entire genome

. Altogether our 46 chromosomes contain about 6 billion nucleotides, i.e., 3 billion base pairs. Each chromosome contains thousands of "genes." The segments of DNA that contain genes (referred to as "coding areas") take up only 3-5% of our DNA; the rest of the DNA consists of " non-coding areas ." Altogether our 23 pairs of chromosomes with their 3 billion base pairs carry the code for 20,000-25,000 genes. Most of the genes are transcribed into "messenger RNAs" (mRNA) that provide a template that is used to translate the code into specific proteins. However, about 100 genes are transcribed into "ribosomal RNAs" and "transfer RNAs" that also play a vital role in the synthesis of proteins, which will be described shortly.

Transcription and Translation of a Gene

The sequence of bases in DNA can be thought of as the "letters" that provide the basis for the genetic code for all of the proteins synthesized by our bodies, and these, in turn, provide the basis for the structure of all of our cells, all of our enzymes, and all of our inherited traits and characteristics. As noted above, the genetic code is contained in chromosomes which are gigantic molecules of DNA complexed with proteins and wound into a compact structure. Humans have 23 pairs of chromosomes, which carry our entire genome. In eukaryotes

chromosomes are located in the cell nucleus, but prokaryotes (bacteria) have a more primitive cellular structure, and they do not have a true nucleus. Instead, the single bacterial chromosome is in the cytoplasm in an area sometimes referred to as the "nucleoid." The production of cellular proteins requires two major processes.

Transcription

First, cellular signals reaching the nucleus cause the TATA-binding protein to the starting point of a particular gene. Additional transcription factors then bind, and an enzyme called RNA polymerase II then binds to the complex. The the polymerase causes the strands of DNA to separate temporarily, and the enzyme synthesizes a strand of messenger RNA (mRNA) to using the the sequence of bases on one strand of DNA (the coding strand) to create a complementary strand of mRNA.

By complementary we mean that the base sequence on mRNA has bases that are the complementary pairs of those on DNA. guanine (G) dictates the insertion of its complement, cytosine (C), and cytosine dictates the insertion of guanine (G); thymine (T) dictates insertion of adenine (A) on mRNA and adenine dictates the insertion of uracil (U). [Note that RNA uses uracil in place of thymine.] Once the strand of mRNA has been created, it leaves the nucleus through pores in the nuclear membrane. The video below gives a fairly detailed picture of the process of transcription. .

[embed]https://www.youtube.com/watch?v=JOBwqwxgJqc[/embed]

Translation

Once the mRNA is in the cytoplasm, it binds to a ribosome, which is composed of protein and a different type of RNA called ribosomal RNA (rRNA). One can think of the ribosome as the work bench where protein is synthesized by covalently bonding amino acids in the sequence specified by the code on the mRNA.

How is the code translated?

One can think of the sequence of bases on mRNA as a series of code letters that are read as a series of three letter "words."

For example, if mRNA had a sequence of bases such as

"...AUGAAGCCGAGUUAAGAU...."

This sequence would, in effect, be read as a series of three-letter words referred to as "codons", each of which specified the insertion of a specific amino acid. In the example just above, the codons or "words" would be:

"...AUG-AAG-CCG-AGU-UAA-GAU...."

Each of these three letter words specifies the insertion of one of the 20 amino acids that make up human proteins. The amino acids are shuttled to the ribosome by a family of transfer RNAs (tRNA), and there are specific tRNAs for each amino acid. The tRNAs consist of a single strand of RNA, but the strand tends to fold back on itself and create loops that are held in place by hydrogen bonds between segments of the tRNA as shown in the illustration below.

In the illustration above the base sequence CAT on DNA was transcribed to become the codon GUA on messenger RNA. The mRNA left the nucleus and attached to a ribosome where protein synthesis (translation) was initiated. Each codon on mRNA specified a particular amino acid to be added to the growing protein chain. In this example, the first four amino acids are designated as "AA1-AA2-AA3-AA4". The next codon on mRNA was "GUA." The complement to GUA is "CAU" which is the anticodon on a transfer RNA that carries the amino acid valine. The anticodon CAU on the tRNA for valine bonded to the GUA codon on mRNA. This positioned valine as the next amino acid in sequence, and with the addition of cellular energy (ATP), valine became covalently bonded to AA4 in the amino acid chain.

In the section above on transcription, we focused on creating the mRNA for a specific gene; those events took place in the cell nucleus. The figure below illustrates the subsequent events that take place after mRNA leaves the nucleus and attaches to a ribosome and initiates translation.

 Sixty-one codons specify an amino acid, and the remaining three act as stop signals for protein synthesis. For example, in the figure below the codon UGA signals an end to synthesis of the protein. The code for all possible three-letter codons on mRNA is shown in the blue table below. Note that there is some redundancy in the code. For example, there are four separate codons for the amino acid proline. Nevertheless, the code is unambiguous, because no triplet codes for more than one amino acid. In addition, with only a few minor exceptions, the same code is universally found in viruses, bacteria, protists, plants, fungi, and animals.

Note that in the example below, UGA, is a signal to STOP, meaning that the amino acid chain is complete and no more amino acids are to be added. Bear in mind that these illustrations include just short sequences of codons, and an actual protein would generally have a much longer sequence. Nevertheless, these examples illustrated how the code is transcribed from DNA to mRNA and how the mRNA is then translated in order to specify the sequence of amino acids in a particular protein which is the product of that particular gene on a chromosome.

The figure above makes it clear that the order of the codons within a gene (a segment of DNA encoding for a specific protein) specifies the amino acid sequence in the protein. The start signal for protein synthesis is the codon AUG, which specifies incorporation of the amino acid methionine. When the mRNA attaches to a ribosome, enzymes look for the AUG codon, not only as a start signal, but also as a means of knowing exactly which is the first letter of each of the three-letter codons. For example, a messenger RNA might have the sequence of codons shown in the illustration above, i.e.,

AUG-AAG-CCG-AGU-GUA-UGA-... etc.

However, if the signal to start was shifted by one nucleotide (e.g., starting the first "U" instead of the "A"), the codons would be read as:

UGA-AGC-CGA-GUG-UAU- ..etc.

and this would result in synthesis of an very different sequence of amino acids. Errors in the sequence of amino acids can, in fact, result from mutations, as described below.

The video below gives a detailed summary of the events that occur during translation of the mRNA template to a protein.

[embed]https://www.youtube.com/watch?v=NJxobgkPEAo[/embed]

This next video is an excellent illustration of transcription and translation, but it illustrates these in a way that provides a real-time approximation.

[embed]https://www.youtube.com/watch?v=NJxobgkPEAo[/embed]

An Interesting Variation by HIV

The human immunodeficiency virus (HIV) is known as a retrovirus. It consists of a single strand (molecule) of RNA inside a protein coat. When HIV binds to a T lymphocyte it enters the lymphocyte and sheds its protein coat. A viral enzyme called reverse trancriptase then uses the strand of viral RNA as a template to create a molecule of DNA which can become incorporated into the DNA of the infected host cell. In this case, RNA is being used to create a molecule of DNA, and the process has been dubbed "reverse transcription."

Mitochondrial DNA

Most of the DNA in eukaryotic cells is contained in the chromosomes within the membrane-bound nucleus, but the mitochondria also have small amounts of DNA (mitochrondrial DNA or mtDNA). As you will recall, mitochondria are membranous subcellular organelles within which there are chains of enzymes that generate cellular energy in the form of ATP (adenosine triphosphate) through a process called oxidative phosphorylation. In addition to their role in production of ATP, mitochondria also regulate apoptosis (programmed cell death) [for more on apoptosis see the section on Apoptosis in the module on the Biology of Cancer]. Mitochondria also play a role in the synthesis of cholesterol and heme (a component of hemoglobin, the oxygen carrying molecules in red blood cells). Mitochondrial DNA consists of 37 genes. Thirteen of these provide the genetic code for synthesizing the enzymes involved in oxidative phosphorylation, and the rest encode the transfer RNAs (tRNA) and ribosomal RNA (rRNA) required for synthesis of the enzymes for oxidative phosphorylation.

Inherited mutations in mitochondrial DNA can also cause a variety of problems with growth, development, and function throughput the body toàn thân as a result of impaired ability to generate ATP. These conditions can produce muscle weakness and wasting, diabetes, kidney failure, heart disease, dementia, hearing loss, visual problems. In addition, mitochondria can also undergo somatic mutations (non-inherited) which may contribute to aging and age-related diseases.

Additional Resources for Mitochondrial DNA

    Molecular Expressions, a web site from the Florida State University Research Foundation. Link to their illustrated introduction to mitochondria and mitochondrial DNA. Link to an overview of mitochondrial DNA from the Neuromuscular Disease Center Washington University.The Howard Hughes Research Institute: Link to an article about recent research into mitochondrial function.

For more information about conditions caused by mitochondrial DNA mutations:

    Genetics trang chủ Reference provides background information about mitochondria and mitochondrial DNA written in consumer-friendly language.The Cleveland Clinic's Introduction to mitochondrial disease.An overview of mitochondrial disorders from GeneReviews.

return to top | previous page | next page

What do chromosomes contain thousands of?

A chromosome contains hundreds to thousands of genes. Every normal human cell contains 23 pairs of chromosomes, for a total of 46 chromosomes. A trait is any gene-determined characteristic and is often determined by more than one gene.

What is the name of the thousands of segments contained in chromosomes quizlet?

Chromosomes contain thousands of segments called: ​genes.

Do chromosomes contain DNA?

Each chromosome is made up of DNA tightly coiled many times around proteins called histones that support its structure. Chromosomes are not visible in the cell's nucleus—not even under a microscope—when the cell is not dividing.

Is a chromosome a small section of a gene?

Chromosomes are structures within cells that contain a person's genes. Genes are contained in chromosomes, which are in the cell nucleus. A chromosome contains hundreds to thousands of genes. Tải thêm tài liệu liên quan đến nội dung bài viết Chromosomes contain thousands of segments called

Video Chromosomes contain thousands of segments called ?

Bạn vừa đọc Post Với Một số hướng dẫn một cách rõ ràng hơn về Video Chromosomes contain thousands of segments called tiên tiến nhất

Chia Sẻ Link Down Chromosomes contain thousands of segments called miễn phí

You đang tìm một số trong những Chia Sẻ Link Cập nhật Chromosomes contain thousands of segments called miễn phí.

Hỏi đáp thắc mắc về Chromosomes contain thousands of segments called

Nếu sau khi đọc nội dung bài viết Chromosomes contain thousands of segments called vẫn chưa hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Mình lý giải và hướng dẫn lại nha #Chromosomes #thousands #segments #called - 2022-10-09 06:50:22

Đăng nhận xét